The source structure effect in broadband observations

Sergei Bolotin, Karen Baver, Olga Bolotina, John M. Gipson, David Gordon, Karine le Bail and Daniel S. MacMillan

NVI, Inc.
7257D Hanover Parkway
Greenbelt, MD 20770

24th Meeting of the European VLBI Group for Geodesy and Astrometry
Las Palmas (Gran Canaria, Spain) March 17-19 2019
Broadband VLBI observations

- Three station networks participated in CONT17 VLBI campaign: the legacy S/X, VLBA and VGOS networks.

- The VGOS network consists of six stations: GGAO12M, ISHIOKA, KOKEE12M, RAEGYEB, WESTFORD and WETTZ13S.

- The stations performed observations during five continuous days: December 3 – 7, 2017.

- The observations were done in the current broadband demonstration mode, recording only half of the possible channels to give a data rate of 8 Gbps instead of the possible 16 Gbps.

- The VGOS observations were correlated at the MIT Haystack Correlator.

- Preliminary data analysis has been performed at Goddard Space Flight Center, NASA and the observations now are available for public access.

- Unfortunately, one of the VGOS stations, Yebes, had a problem with hardware, so it was not included in the analysis.
Data analysis of the broadband observations

Software
The observations were processed by vSolve software using the embedded software using the embedded ECMAScript to treat data uniformly.

Parameterization
The baseline vectors, source positions and angles of nutation were estimated as local parameters. Station clock offsets, wet zenith delays, and atmospheric gradients were estimated as stochastic parameters (random walk model).
Anomalies in delay residuals, 17DEC04VG

- Anomalous residuals for 0552+398 are visible at all five VGOS session.
- The WRMS for the source, 12-13ps, are much bigger than the WRMS for a session, 2-3ps.

Residuals for baselines of the stations GGAO12M, ISHIOKA and KOKEE12M.
Two points source structure model

According to Thomas (1980), source structure affects the group delay as

$$\tau_s = \frac{Z_s \frac{\partial Z_c}{\partial \omega} - Z_c \frac{\partial Z_s}{\partial \omega}}{Z_s^2 + Z_c^2}$$

where

$$Z_c = \int \int I(\vec{P}, \omega, t) \cos(\omega \frac{\vec{b}\vec{P}}{c}) d\Omega$$

$$Z_s = \int \int I(\vec{P}, \omega, t) \sin(\omega \frac{\vec{b}\vec{P}}{c}) d\Omega$$

Assuming a source consist of two close points:

$$I(\vec{P}) = g_1 \delta(\vec{P} - \vec{P}_1) + g_2 \delta(\vec{P} - \vec{P}_2)$$

then the source structure effect in group delay will be

$$\tau_s = -\frac{R}{f} \frac{(1 + K)^2}{1 + K^2 + 2K(\cos^2(2\pi R) - \sin^2(2\pi R))}$$

where

$$K = \frac{g_2}{g_1}, g_2 < g_1$$

$$R = (\vec{b}/\lambda)\vec{P}_1\vec{P}_2$$
Searching initial values of the model

- The two point source structure model consists of the following parameters: an offset of the second component from the central point, \((x, y)\), and a ratio of the amplitudes of the components, \(K\).

- To use the least square estimation we first have to search for the initial values of the model.

- For a fixed second component position we estimated the ratio of the amplitudes.

- The image shows distribution of WRMS of the source referred to the minimal WRMS, \(WRMS(x, y) - WRMS_{\text{min}}\).
Estimated parameters of the model

<table>
<thead>
<tr>
<th>session</th>
<th>Number of obs.</th>
<th>WRMS for 0552+398 (ps)</th>
<th>Model parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usable Used</td>
<td>Model:off Model:estimated K x(mas) y(mas)</td>
<td></td>
</tr>
<tr>
<td>17DEC03VG</td>
<td>134 132</td>
<td>13.6 2.8</td>
<td>0.385 0.900 -0.128</td>
</tr>
<tr>
<td>17DEC04VG</td>
<td>118 118</td>
<td>13.5 2.3</td>
<td>0.352 0.930 -0.223</td>
</tr>
<tr>
<td>17DEC05VG</td>
<td>138 137</td>
<td>13.8 2.6</td>
<td>0.390 0.900 -0.105</td>
</tr>
<tr>
<td>17DEC06VG</td>
<td>90 90</td>
<td>15.2 3.2</td>
<td>0.384 0.905 -0.098</td>
</tr>
<tr>
<td>17DEC07VG</td>
<td>149 149</td>
<td>13.3 2.8</td>
<td>0.378 0.911 -0.155</td>
</tr>
</tbody>
</table>
Residuals after the model has been applied
Multiple points source structure model

For multiple points source structure model the brightness distribution can be written as

\[I(\vec{P}) = g_0 \delta(\vec{P} - \vec{P}_1) + \sum_{i=1}^{N} g_i \delta(\vec{P} - \vec{P}_g) \]

and the source structure effect in group delay

\[\tau_s = -\frac{1}{f} \sum_{i=1}^{N} k_i \sin 2\pi R_i \sum_{i=1}^{N} k_i R_i \sin 2\pi R_i + \left(\sum_{i=1}^{N} k_i \cos 2\pi R_i + 1 \right) \sum_{i=1}^{N} k_i R_i \cos 2\pi R_i \]

where

\[k_i = \frac{g_i}{g_0}, \quad g_i < g_0 \]

\[R = (\vec{b}/\lambda) \vec{P}_i \]
Searching initial values of the model

Model parameters

<table>
<thead>
<tr>
<th>K</th>
<th>x (mas)</th>
<th>y (mas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2992</td>
<td>-0.7615</td>
<td>-0.1313</td>
</tr>
<tr>
<td>0.1896</td>
<td>0.4328</td>
<td>-0.3126</td>
</tr>
</tbody>
</table>
Frequency dependent source structure model

The multiple points source structure model with components that have different spectral indexes:

\[I(\vec{P}) = g_0 \delta(\vec{P} - \vec{P}_1) + \sum_{i=1}^{N} g_i \delta(\vec{P} - \vec{P}_g) \]

and

\[g_i = r_i \left(\frac{\omega}{\omega_0} \right)^{\alpha_i} \]

The source structure effect in group delay

\[\tau_s = \frac{T_1}{Z^2} + \frac{T_2}{Z^2} \]

where

\[T_1 = -\frac{1}{2\pi f} \left[\sum_{i=1}^{N} \beta_i k_i \sin 2\pi R_i + \sum_{i=1}^{N} \sum_{j=i+1}^{N} k_i k_j (\beta_i - \beta_j) \sin 2\pi (R_i - R_j) \right] \]

\[T_2 = -\frac{1}{f} \left[\sum_{i=1}^{N} k_i R_i \cos 2\pi R_i + \sum_{i=1}^{N} k_i^2 R_i + \sum_{i=1}^{N} \sum_{j=i+1}^{N} k_i k_j (R_i + R_j) \cos 2\pi (R_i - R_j) \right] \]

\[Z^2 = 1 + \sum_{i=1}^{N} k_i^2 + 2 \left[\sum_{i=1}^{N} k_i \cos 2\pi R_i + \sum_{i=1}^{N} \sum_{j=i+1}^{N} k_i k_j \cos 2\pi (R_i - R_j) \right] \]
Conclusions

The effect of source structure is directly visible in the broadband observations. Taking into account source structure effects will be necessary for analysis of VGOS observations.

...

Thank you for your attention!