Global Geodetic Observing System and Core Sites

Michael Pearlman¹, Chopo Ma², Erricos Pavlis³, Carey Noll², Frank Lemoine², Scott Wetzel⁴, Graham Appleby⁵, Ruth Neilan⁶

¹Harvard-Smithsonian Center for Astrophysics, Cambridge, USA
²NASA Goddard Space Flight Center, Greenbelt, USA
³University of Maryland Baltimore County, Baltimore, USA
⁴Honeywell Solutions Technology Inc., Greenbelt, USA
⁵Natural Environment Research Council, Space Geodesy Facility, Herstmonceux, UK
⁶Jet Propulsion Laboratory and California Institute of Technology, Pasadena, USA

Meeting with Delegation from Nigeria
NASA Goddard Space Flight Center
Greenbelt MD
Global Geodetic Observing System (GGOS)

- Established by the IAG to integrate the three fundamental areas of geodesy (Earth’s shape, gravity field, and rotation), to monitor geodetic parameters and their temporal variations in a global reference frame with a target relative accuracy of 10E-9 or better (See GGOS 2020)
- Provide products & services with the geodetic accuracy necessary to address important geophysical questions and societal needs, and to provide the robustness and continuity of service which will be required of this system in order to meet future needs and make intelligent decisions
- Constituted mainly from the Services (ILRS, IVS, IGS, IDS, and IERS)
- Main focus at the moment is the International Terrestrial Reference Frame
Motivation: Monitoring the Earth System

Perform proper measurements to allow us to make intelligent societal decisions?
Geodesy is the science of the Earth’s shape, gravity and rotation, including their evolution in time.

Techniques used to observe the geodetic properties of the Earth provide the basis for the International Terrestrial Reference Frame (ITRF).

The ITRF is the foundation for virtually all airborne, space-based, and ground-based Earth observations, and is fundamentally important for interplanetary spacecraft tracking and navigation.

The ITRF performance requirement for sea level measurement is 1 mm reference frame accuracy and 0.1 mm/year stability (NRC 2010).

Most stringent requirement on ITRF performance is sea level.

Provided through the courtesy of Prof. Bernard Minster.
Pillar 1: Geometry and Deformation of the Earth

• Problem and fascination of measuring the Earth:

 \textbf{Everything is moving !}

• Monitoring today mainly by GPS permanent networks

• Examples:

 – Plate motions
 – Solid Earth tides (caused by Sun and Moon)
 – Loading phenomena (ice, ocean, atmosph.)
 – Earthquakes ...

• Continuous monitoring is absolutely crucial
Pillar 2: Earth Rotation (Sub-Daily Variations)

Z

Instantaneous Rotation Axes

CIO

Polar Motion

Equator

GPS (1h) Altimetry

Accuracy: ~4 mm

3 cm

X

Y

November 20, 2013

Meeting with Delegation from Nigeria
NASA Goddard Space Flight Center
The Reference Frame and Precision Orbit Determination impact all Three Pillars of Geodesy

1. Geometry and deformation of the Earth
 - GEOMETRY
 - GPS, Altimetry, INSAR
 - Remote Sensing
 - Leveling
 - Sea Level

2. Orientation and rotation of the Earth and its variation
 - REFERENCE SYSTEMS
 - VLBI, SLR, LLR, GPS, DORIS

3. Gravity field of the Earth and its temporal changes
 - GRAVITY FIELD
 - Orbit Analysis
 - Satellite Gradiometry
 - Ship- & Airborne Gravimetry
 - Absolute Gravimetry
 - Gravity Field Determination
 - EARTH ROTATION
 - VLBI, SLR, LLR, GPS, DORIS
 - Classical: Astronomy
 - New: Ringlasers, Gyros
GPS Mapping of Velocity Fields

Courtesy of Dr. Robert Reilinger, MIT
Global mean SSH variations from TOPEX, Jason-1, Jason-2 with respect to 1993–2002 mean, plotted every 10 days using the NASA GSFC orbits from Lemoine et al. (2010), and the latest GDR releases and corrections for the altimetry.

November 20, 2013

Meeting with Delegation from Nigeria
NASA Goddard Space Flight Center
Ocean Currents from GRACE and Altimetry

EGM96 (old)
GRACE (new)

Geostrophic surface currents (altimetry Mean Sea Surface Height – Geoid)
- EGM96: noise and systematic errors dominate the picture
- GRACE: all the major ocean currents visible
Near Real Time Lake Level Monitoring

Reprocessed altimeter data better enables the monitoring of lake levels for the Foreign Agriculture Service under the U.S. Department of Agriculture for crop predictions and irrigation management.
Geodesy and Natural Hazards

- Measure the deformation of the ground for a number of applications
- Provides unique information on the deformation due to natural hazards (volcanoes, landslides, earthquakes, etc.)
- At right is an InSAR map of the ground displacement from the January 2010 M7 Haiti earthquake
- Each band of color contours is 12 cm of, so the total displacement was ~1 m over a large area
- Measurements help us predict areas of future risk

Sang-Hoon Hong, Falk Amelung, Tim Dixon, Shimon Widowinski, Guoqing Lin, Fernando Greene
Rosenstiel School of Marine & Atmospheric Science, University of Miami
The Impact of Ancient Ice Sheets

- The thick (~3 km) ice sheets that began melting ~20,000 years ago have left the Earth deformed.

- Is this the cause of the “low” in the free air gravity anomaly (FAGA) of northern Canada? (left, A, as measured by GRACE)

- The best predictions of the viscoelastic deformation using GRACE rates (left, B) only explain about 50% of the signal.

- The conclusion of Tamisea et al. [2007] is that the remaining 50% is caused by convection in the Earth’s mantle.
Gravity Field Missions: CHAMP and GRACE

CHAMP (2000): GFZ, DLR

- Gravity field and magnetic field
- Atmosphere & ionosphere sounding
- GPS, accelerometer, magnetometers

GRACE (2002): USA, GFZ, DLR

- Gravity field
- Atmosphere & ionosphere sounding
- K-band (5 μm), GPS, accelerometer

PI: Christoph Reigber, now Markus Rothacher / GFZ
Co-PI: Byron D. Tapley / CSR Austin

Deformational Impact of the Hydrological Cycle

- Annual hydrological cycle will act as a gravitational load, deforming the Earth.
- The GRACE mission can measure the presence of water on the surface.
- At the right is a map of the annual amplitude of surface deformation in South America estimated from GRACE data [Davis et al., 2004].
- Also shown in map: some continuous GPS sites.
GRACE Secular Trends (2002-2009)

- Ice loss
- Mass redistribution from Earthquakes
- Hydrological signal

[Wahr, 2009]
POD: Time Varying Gravity Components

Atmospheric gravity (NCEP-6hr)

Atgrav(ECMWF-3hr)+Ocean(MOG2D)

Hydrology (GLDAS)

Signal (RMS cm of water)

Jason radial orbit RMS (mm)
Global Water Vapor Distributions

Mean global water vapor distribution at 4 km height from CHAMP and GRACE (September 2006)
COSMIC: 2500 Occultations per Day

Occultation Locations for COSMIC, 6 S/C, 6 Planes, 24 Hrs

NASA Goddard Space Flight Center

Meeting with Delegation from Nigeria
November 20, 2013
Example: GPS and a Tsunami Early Warning System

- GPS receivers
- Tide Gauges
- GPS Buoys
- CHAMP
- Communication Satellite
- GPS Satellite
- Seismometer
- Erdbeben-wellen
- Erdbeben
- Druck sensoren
- Real-Time Simulation

Example: GPS and a Tsunami Early Warning System

- Tide Gauges
- GPS Buoys
- Communication Satellite
- GPS Satellite
- Seismometer

November 20, 2013
Meeting with Delegation from Nigeria
NASA Goddard Space Flight Center
Common Thread:

- Reference Frame
- Precision Orbit Determination
GGOS Reference Frame Requirement

- Basis upon which we measure change over space, time, and evolving technology
- Most stringent requirement from sea level rise:
 - “accuracy of 1 mm, and stability at 0.1 mm/yr”
 - This is a factor 10-20 beyond current capability
- Accessibility: 24 hours/day; worldwide
 Users anywhere on the Earth can position their measurements in the reference frame
- Space Segment:
 - LAGEOS, LARES, GNSS, DORIS to define the reference frame
- Ground Segment (Core Sites):
 - Global distributed network of “modern technology”, co-located SLR, VLBI, GNSS, DORIS stations locally tied together with accurate site ties
 - Dense network of GNSS ground stations distributes the reference frame globally to the users
 - Co-locate with other measurement techniques including gravity field, tide gauges, leveling, etc.
Simulation Studies to Scope the Network
(impact on the Reference Frame)
(Erricos Pavlis)

Simulation studies show:

- ~32 globally distributed, well positioned, new technology, co-location sites will be required to define and maintain the reference frame;
- ~16 of these co-location stations must track GNSS satellites with SLR to calibrate the GNSS orbits which are used to distribute the reference frame.

- Major challenge, requiring time, significant resources, and strong international participation
Very Long Baseline Interferometry (VLBI)

- Geometric technique measures the difference in arrival time between two Earth-based antennas of a radio wavefront emitted by a distant quasar.
- From a many of these time difference measurements from a global network of antennas, VLBI determines the inertial (celestial) reference frame defined by the quasars and simultaneously, the precise positions and velocities of the antennas.
- Since the antennas are fixed to the Earth, their locations track the instantaneous orientation of the Earth in the inertial reference frame and relative changes in position (tectonic plate motion, regional deformation, and local uplift or subsidence).
- The current uncertainty of the delay observable is ~10-15 ps with precision at 4 ps.
- New systems are implementing much broader bandwidth detection and recording, and real-time data transmission.
Satellite Laser Ranging (SLR)

- Direct optical measurement of range to satellites
- KHz ranging for faster satellite acquisition and pass interleaving.
- The state of the art is sub-millimeter precision average measurements (called normal points) with centimeter level accuracies.
- Tracks satellites from 300 km to 22,000+ km in day & night.
- Each station tracks independently but a network of station can be scheduled together to optimize the tracking.
- Requires only a passive retro-reflector array on the satellite.

\[
\text{Range (m) = range(sec) \cdot \frac{c}{2}}
\]
Global Navigation Satellite System

• Operates with GPS, Glonass, Compass, Galileo, etc
• GNSS receivers are used as a local survey tool for epoch measurements of 3 dimensional vectors between two control points. The GNSS local survey tool data is used to transform the local reference frame to the ITRF.
• There are several different types of antennas available. Due to their ability to mitigate multipath of satellite signals, choke ring antennas are the most widely used in geodetic surveys.
Doppler & Radiopositioning Integrated by Satellite (DORIS).

- Dual-Frequency Doppler Beacons (2.036 Ghz & 401.25 Mhz), Distributed Around the World.
- Developed by the CNES (Centre National d’Etudes Spatiales) & IGN (Institut Géographique National).
- The network was developed to support Precision Orbit Determination (POD) for LEO satellites, such as the SPOT Remote Sensing Satellites & Altimeter Satellites such as TOPEX/Poseidon.
- The oldest sites in the network have been occupied since the late 1980’s (DORIS data are routinely available since 1992, or the launch of TOPEX/Poseidon).
Why do we need co-location of techniques? (Core Sites)

- Measurement requirements are very stringent
- Each technique makes its measurements in a different way and therefore each measures something a little different:
 - Terrestrial (satellite) verses celestial (quasar) reference
 - Range verses range difference measurements
 - Broadcast up verses broadcast down
 - Radio verses optical
 - Active verses passive
 - Geographic coverage
- Each technique has different strengths and weaknesses
- The combination allows us to take advantage of the strengths and mitigate the weaknesses
GGOS: the Ground-Based Component

VLBI

GPS

Abs.Grav.

Sup.Grav.

SLR/LLR

DORIS

November 20, 2013
Meeting with Delegation from Nigeria
NASA Goddard Space Flight Center
Goddard Geophysical and Astronomical Observatory (GGAO) has four techniques on site:

- Legacy SLR, VLBI, GPS, DORIS
- NGSLR
- VLBI2010
- New generation GNSS
Local Ties Between Geodetic Stations

• “...no technique currently contributing to the ITRF has a direct connection to any other technique. Each realizes its own internally consistent set of coordinates, but it is only through local ties at co-located sites that a completely resolved reference frame is realized.” (NRC 2010 pg. 93).

• “In terms of accuracy, the typical uncertainty of the local ties used for the current ITRF is 2-5 mm... With the increased precision available from geodetic techniques, a precision of 1 mm or better should be the goal of all new local tie surveys.” (NRC 2010 pg. 93).

• These “tie vectors” enter the combination of space geodetic solutions effectively as a fifth technique and are not only necessary for rigorous ITRF realization but also serve to highlight the presence of site-specific biases.
Co-location in Space

Compass
GNSS/SLR

GLONASS
GNSS/SLR

GPS
GNSS/SLR

GIOVE/Galileo
GNSS/SLR

Jason
DORIS/GNSS/SLR

CHAMP
GNSS/SLR

Envisat
DORIS/SLR

GRACE
GNSS/SLR
Levels of Activity

Infrastructure

Level 5: Quasars
Level 4: Moon, Planets
Level 3: MEO/GEO
Level 2: LEO
Level 1: Stations

NASA Goddard Space Flight Center

Earth

GPS/GLONASS/GALILEO

Planets

Moon

GRACE

CHAMP

Jason-1

LAGEOS
GGOS Site Requirements Document
(http://cddis.gsfc.nasa.gov/docs/GGOS_SiteReqDoc.pdf)

- **Introduction and Justification**
 - What is a Fundamental Station?
 - Why do we need the Reference Frame?
 - Why do we need a global network?
 - What is the current situation?
 - What do we need?

- **Site Conditions**
 - Global consideration for the location
 - Stable Geology (free from dislocations and long relaxation times)
 - Sufficient Site area (7-8 hectares)
 - Good Weather and sky conditions
 - Low Radio frequency and optical Interference (terrain shielding)
 - Clear horizon conditions (10 – 15 degrees)
 - Manageable air traffic conditions and aircraft protection
 - Wide band communications
 - Land ownership/control
 - Local ground geodetic networks
 - Site Accessibility
 - Local infrastructure and accommodations
 - Sufficient electric power
 - Site security and safety
 - Local commitment
Examples of Local Site Stability (time history of GPS)

A stable time history is essential for the development of the Reference Frame

Arequipa and Concepción plots courtesy Tom Herring/MIT

Yarragadee Australia: stable site

Arequipa Peru: 2001 earthquake and subsequent relaxation

Concepción Chile: 2010 earthquake post seismic
Eighteen Responses covering 38 Sites have been submitted to the GGOS Call for Participation

<table>
<thead>
<tr>
<th>Agency (Country)</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKG/FESG (Germany)</td>
<td>Wettzell</td>
</tr>
<tr>
<td>NERC (UK)</td>
<td>Herstmonceux</td>
</tr>
<tr>
<td>IRA (Italy)</td>
<td>Medicina, Noto, Sardinia</td>
</tr>
<tr>
<td>OSO (Sweden)</td>
<td>Onsala</td>
</tr>
<tr>
<td>FGI (Finland)</td>
<td>Metsahovi</td>
</tr>
<tr>
<td>IGN Spain)</td>
<td>Yebes</td>
</tr>
<tr>
<td>SPC (Poland)</td>
<td>Borowiec</td>
</tr>
<tr>
<td>SHAO (China)</td>
<td>Shanghai, Beijing, Changchun, Wuhan, Kunming, Urumuqi, Sanyo, (San Juan)</td>
</tr>
<tr>
<td>GA (Australia)</td>
<td>Yarragadee, Mt. Stromlo, Katherine, Hobart</td>
</tr>
<tr>
<td>NASRDA (Nigeria)</td>
<td>Toto</td>
</tr>
<tr>
<td>NASA (US)</td>
<td>GSFC, Westford, Kokee Park, Monument Peak, Fortaleza, McDonald, Mt. Haleakala, Hartebeesthoek, Papeete, Arequipa</td>
</tr>
<tr>
<td>RIG (Czech Republic)</td>
<td>Pecny</td>
</tr>
<tr>
<td>NRF (South Africa)</td>
<td>Hartebeesthoek</td>
</tr>
<tr>
<td>ASI (Italy)</td>
<td>Matera</td>
</tr>
<tr>
<td>KACST (Saudi Arabia)</td>
<td>Riyadh (SALRO)</td>
</tr>
<tr>
<td>NMA (Norway)</td>
<td>Ny Alesund</td>
</tr>
<tr>
<td>RAS (Russian Federation)</td>
<td>Svetloe, Zelenchukskaya, Badari</td>
</tr>
<tr>
<td>CNES</td>
<td>DORIS Network</td>
</tr>
</tbody>
</table>

Yellow denotes additions during the last year
Network of Current, Planned and Potential Core Sites

Based on:
- Current Core Stations
- Station being implemented
- Stations with upgrades underway or planned
- Sites being offered for Partnerships
Activities Underway in South America

- Discussions underway with:
 - Colombia: Instituto Geográfico Agustín Codazzi (IGAC)
 - Brazil: National Institute For Space Research (INPE)
- TIGO to move from Concepción to La Plata
- San Juan (NAOC):
 - Planning 40m VLBI2010 compatible system in 2015
Core Site Location Under Consideration
French Polynesia

- Cooperation between NASA, CNES, and UFP
- SLR:
 - MOBLAS-8 operational since 1997
 - Co-located GNSS and DORIS
- VLBI:
 - Discussions underway
Core Site Locations Under Consideration
Malindi, Kenya and Toto, Nigeria
(speculative)

- Discussions initiated with the Italian Space Agency (ASI) for a partnership site
- GGOS CfP site offered in Toro, Nigeria
Summary

• Challenging program with very important science and societal benefits
• Technologies are maturing
• Global distribution is essential
• Very large opportunity for participation in analysis and scientific research
• Should engage young scientists and students
• Success will depend on partnerships
• Partners will have to make a strong commitment