NASA's Next Generation Space Geodesy Program

M. R. Pearlman¹, S. Desai², D. S. Gross², F. G. Lemoine³, L. M. Hillard³, J. L. Long³, C. Ma³, J. F. McGarry³, S. M. Merkowitz³, D. Murphy², C. E. Noll³, E. C. Pavlis⁴, D. A. Stowers², and F. H. Webb²

¹Harvard-Smithsonian Center for Astrophysics, Cambridge, USA (mpearlman@cfa.harvard.edu, 001 617 4960121)
 ²Jet Propulsion Laboratory and California Institute of Technology, Pasadena, United States
 ³NASA Goddard Space Flight Center, Greenbelt, USA
 ⁴University of Maryland Baltimore County, Baltimore, USA

The Space Geodesy Project

- New initiative started at the end of FY11. Part of the Earth Science Decadal and the National Research Council study "Precise Geodetic Infrastructure."
- Goddard/JPL partnership with participation from Smithsonian Astrophysical Observatory and the University of Maryland.
- Goals:
 - Establish and operate a prototype next generation space geodetic site with integrated next generation SLR, VLBI, GNSS (and DORIS) systems, along with a system that provides for accurate vector ties between them.
 - Develop a Project Implementation Plan for the construction, deployment and operation of a NASA network of similar next generation stations that will become the core of a larger global network of modern space geodetic stations.

Motivation for the NASA Space Geodesy Project

- Requirements for the ITRF and POD have increased dramatically since the 1980's
 - Most stringent requirement comes from sea level studies:
 - "accuracy of 1 mm, and stability at 0.1 mm/year" (GGOS 2020)
 - This is a factor 10-20 beyond current capability;
 - Measurement of Sea Level is the prime driver, but other applications are not far behind;
- Simulations show the required ITRF is best realized from a combination solution using data from a global network of ~ 30 integrated stations having all available techniques (VLBI, SLR, GNSS, and DORIS) with next generation measurement capabilities
 - The current network cannot meet this requirement, even if it could be maintained over time (which it cannot).
- NASA is a major participant in the Space Geodesy Network;
- The current core NASA network is deteriorating and inadequate.
- The path forward on much of the technology is known.

Co-located VLBI, SLR, GNSS

(Some with DORIS)

Simulation Studies to Scope the Network

(impact on the Reference Frame)

(Erricos Pavlis)

- Simulations completed
 - ~30 globally distributed, well positioned, co-location Core Sites with modern technology and proper conditions;
 - 16 of these Core Sites must track
 GNSS satellites with SLR to calibrate the GNSS orbits;
- Simulations underway
 - Sensitivity to intersystem vector accuracy
 - Phased deployment; evolution of the products
 - Impact of errors and outages;
 - Additional space objects
 - Tracking scenarios

GGOS Site Requirements Document

(http://cddis.gsfc.nasa.gov/docs/GGOS SiteReqDoc.pdf)

- Introduction and Justification
 - What is a Fundamental Station?
 - Why do we need the Reference Frame?
 - Why do we need a global network?
 - What is the current situation?
 - What do we need?
- Site Conditions
 - Global consideration for the location
 - Geology
 - Site area
 - Weather and sky conditions
 - Radio frequency and optical Interference
 - Horizon conditions
 - Air traffic and aircraft Protection
 - Communications
 - Land ownership
 - Local ground geodetic networks
 - Site Accessibility
 - Local infrastructure and accommodations
 - Electric power
 - Site security and safety
 - Local commitment

NASA's Next Generation Satellite Laser Ranging System (NGSLR) Basis for the System

- Higher pulse repetition rate for faster data acquisition;
- Smaller, faster slewing telescope for more rapid target acquisition and pass interleaving;
- More accurate pointing for link efficiency;
- Narrower laser pulse width for greater precision;
- Single photon detection for greater accuracy;
- More automation for economy (24/7);
- Greater temporal and spatial filtering for improved signal to noise conditions;
- Modular construction and more off the shelf components for lower replication/operations/maintenance cost;
- Reduced ocular, chemical, electrical hazards

NASA's Next Generation Satellite Laser Ranging System (NGSLR)

- High repetition rate (2 Khz) laser
- New 50 ps pulse width laser being installed
- 1 to 2 arcsec pointing/tracking accuracy
- Day and Night-time operation
- Operating on full range of satellites (LEO to GNSS)
- Preliminary inter-comparison testing with legacy system shows good stability.
- Still lots to do

Daylight Ranging to GNSS

VLBI 2010

(Developed within the International VLBI Service (IVS)

Specifications:

- Smaller antennas (~12m), operating unattended, mechanically reliable, economically replicable more observations for troposphere and geometry Patriot antenna
- Broad continuous frequency range (~2-12 GHz) using multiple bands smaller observation error and interference avoidance
- Higher speed recording (8 Gbps), increased sensitivity Mark 5C recorder
- Transfer data with combination of high speed networks and high rate disk systems

Features:

- Standardization and commercial off-the-shelf availability of many parts for lower operating and replicating costs
- Selectable RF band placement to better tolerate RF interference and allow better accommodation with legacy (S/X) systems
- Improved group delay to support ~1 mm position determination
- Use of phase delay?

VLBI 2010 Status

- 12m antenna implemented at GSFC with the full VLBI2010 signal chain;
- Demonstrated 5 deg per sec azimuth slew rate
- Demonstrated 60% aperture efficiency
- The Westford 18m implemented with the same electronics but a prototype feed;
- Demonstrated broadband (8 Gbps) data collection and 4 ps group delay on the Haystack-GSFC baseline
- Six hours of geodetic data taken at 3.2, 5.2, and
 9.2 Ghz; all bands produced good observations

Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS)

- GGAO DORIS beacon is part of a global network of ~57 stations since June 2000.
- DORIS receivers are used on altimeter (TOPEX, Jason1, Jason2, ENVISAT, Cryosat-2) and remote sensing (SPOT) satellites; Future Missions: Jason-3, SWOT & SENTINEL-3, GRASP.
- GSFC maintains the archival and distribution of the worldwide DORIS geodetic data using the Crustal Dynamics Data Information System (CDDIS).

GNSS Installation at GSFC

Pair of multi-constellation GNSS (GPS, GLONASS, Galileo) receivers (GODN and GODS) installed with deep-drilled brace monuments; data collecting since January 2012

Existing GPS (GODE) and GPS +GLONASS (GODZ) receivers to remain operational

GPS Results at GSFC

- Processed 6 months of GPS data from GODN and GODS
 - Independent daily static point positioning with single-receiver ambiguity resolution using JLP GIPSY/OASIS software
- De-trended time series of independently determined station positions in figure below right;
 - highly- correlated position solutions at GODN and GODS;
 - common mode geophysical signals and systematic errors due to short baseline;
- Time series of GODN/GODS baseline computed from independently determined positions
- De-meaned time series of baseline show standard deviation of 0.5 mm East, 0.7 mm North, and 2.7 mm up
- Future work
 - Expect factor of 2 3 reduction in the standard deviation of the GODN/GODS baseline by simultaneously using L1 only data from both stations
 - Evaluate GPS baselines against ground surveys

Major Challenge Co-location Intersystem Vectors

- Automated measurement of inter-instrument vectors is an essential aspect of an integrated space geodesy station.
- Measurements provide closure between terrestrial reference frames derived from different space geodesy techniques.
- Tests of technologies and currently available systems underway at GGAO.
- <u>BIG CHALLENGE: How do we extrapolate measurements to the "electronic or</u> optical" reference point on each instrument?

Space Geodesy Project Approach to RFI

- Modeling the GGAO environment and VLBI2010 susceptibility before & after tree removal
- Measuring the DORIS Beacon, and the NGSLR radars in South, radar masks & DORIS path loss provide mitigation
- Measuring 12m side lobes with a standard gain horn simulator >100m away
- Mitigate RFI with masks, filtering, and shielding

Lots of Instruments on the Site

Project Status Summary

- Simulation studies have scoped the size of the full international network required;
- Supported the development of the GGOS Site Requirements Document that defines Core Site and details their ideal condition;
- Prototype station is currently on-budget and on-schedule for a July 2013 completion;
- An implementation plan is currently being developed to upgrade the current NASA sites and establish new sites with our international partners;
- Evaluate current NASA Sites as candidate Core Sites;
 - Current year: GSFC, Monument Peak, Mt. Haleakala, Kokee Park,
 McDonald, Gilmore Creek, Arequipa, Yarragadee, Hartebeesthoek, Tahiti,
 Fortaleza
- On-going discussions with existing and potential international partners, including Brazil, Columbia, Norway, South Africa, Australia, and France.
- If additional systems are built, they could be deployed as a full station or perhaps as a system contribution in a partnership.